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❑ Motivation

❑Conventional gradient-based iterative algorithms may take time to converge

▪ Gradient descent method

❑To resolve various technical issues in the networks, it may need to repeated 

solve optimization problems with the same structure but different system 

parameters

▪ To allocate the amount of resource 𝑟 to a task for maximizing the utility

max
𝑟

1

1 + 𝑒− 𝑟−𝑅

❑It requires a new optimal solution when the system parameters (e.g., 𝑅 )

change

▪ Requires re-run of optimization process

Desirable to have an approach to quickly produce solutions for a given 

optimization problem over a range of system parameters. 
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❑ Target: quickly generate solutions

➢ Historical gradient information can help to converge

▪ Gradient descent with momentum (GDM)
𝑔𝑘 = 𝛾𝑔𝑘−1 + 𝛼∇𝑥𝑓(𝑥𝑘)

❑ Reasons for choosing Long Short-Term Memory networks (LSTMs) 

❑Workflow of LSTMs
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2



❑ Solve Constrained optimization problems by CLSTMs

s.t. ℎ 𝑥 ≤ 0

𝑃1 min
𝑥

𝑓(𝑥)

❑ By introducing the Lagrange multiplier 𝜆, we form the Lagrange function 𝐽 𝑥, 𝜆
and the dual optimization problem 𝑃2

𝐽 𝑥, 𝜆 = 𝑓 𝑥 + 𝜆ℎ(𝑥).

𝑃2 max
𝜆

𝐽( argmin
𝑥

𝐽(𝑥, 𝜆) , 𝜆)

s.t. 𝜆 ≥ 0

❑ To satisfy 𝜆 ≥ 0 and avoid numerical issues, we define a ‘smooth’ projection 
function 𝜓 𝜆 ≥ 0, ∀𝜆 to form 𝑃3

𝑃3 max
𝜆

𝐽( argmin
𝑥

𝐽 𝑥, 𝜓 𝜆 , 𝜓(𝜆))

❑ For a constrained optimization problem
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s.t. ℎ 𝑥 ≤ 0

𝑃1 min
𝑥

𝑓(𝑥)
𝑃3 max

𝜆
𝐽( argmin

𝑥
𝐽 𝑥, 𝜓 𝜆 , 𝜓(𝜆))

❑ Theorem: Having 𝜆∗ as the optimal solution for the problem P3 is equivalent to 
having 𝑢∗ as the optimal solution for the problem P2, where 𝑢∗ = 𝜓(𝜆∗).

Assumption:

The strong duality holds (i.e., the duality gap is zero) for P1 and P2, and thus there 
exists at least a dual optimal 𝜆∗ and a primal optimal 𝑥∗

❑ Solve Constrained optimization problems by CLSTMs

❑ According to the duality theory, P2 has the same optimal solution for P1 

under the condition that the duality gap is zero 

The proposed CLSTMs aims to find the optimal 𝜆∗ and 𝑥∗ for P3  
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❑ Solve Constrained optimization problems by CLSTMs

❑ During the inference process, two coupled LSTMs, 𝑚 and ෝ𝑚, are used to find 

the optimal 𝑥 and 𝜆, respectively, by iterations:

𝑥𝑘+1 = 𝑥𝑘 + 𝑔𝑘 ,

𝑔𝑘
ℎ𝑘+1

= 𝑚(𝛻𝑥𝐽 𝑥𝑘 , 𝜓(𝜆𝑘+1) , ℎ𝑘 , 𝜙), 

𝜆𝑘+1 = 𝜆𝑘 + ො𝑔𝑘 ,

ො𝑔𝑘
෠ℎ𝑘+1

= ෝ𝑚(𝛻𝜆𝐽 𝑥𝑘 , 𝜓(𝜆𝑘) , ෠ℎ𝑘 , ෠𝜙), 

𝛻𝑥,𝑘 = 𝛻𝑥𝐽 𝑥𝑘 , 𝜓(𝜆𝑘+1)𝛻𝜆,𝑘 = 𝛻𝜆𝐽 𝑥𝑘 , 𝜓(𝜆𝑘)
𝑘 − 1

𝑘 + 1

𝑚 ෝ𝑚

ℎ𝑘

ℎ𝑘+1
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𝑥𝑘

𝑥𝑘+1
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ො𝑔𝑘

𝑘
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❑ Training of CLSTMs

❑In each iteration, 𝑥 and 𝜆 are updated

❑After 𝐾 iterations (i.e., one frame), the parameters 𝜙𝑖 and ෠𝜙𝑖 of the 

LSTM 𝑚 and ෝ𝑚 are updated to minimize the loss functions:

𝐿 𝜙𝑖 = 𝐸𝑓[෍
𝑘= 𝑖−1 𝐾

𝑖𝐾

𝑤𝑘 𝐽 𝑥𝑘 , 𝜓(𝜆𝑘+1) ]

෠𝐿 ෠𝜙𝑖 = −𝐸𝑓[෍
𝑘= 𝑖−1 𝐾

𝑖𝐾

ෝ𝑤𝑘 𝐽 𝑥𝑘 , 𝜓(𝜆𝑘) ]

Iteration 𝑖 − 1 𝐾

෠ℎ 𝑖−1 𝐾+1෠ℎ 𝑖−1 𝐾

∇𝜆𝑓(𝜆 𝑖−1 𝐾)

+𝜆 𝑖−1 𝐾

ො𝑔 𝑖−1 𝐾
ෝ𝑚

Iteration 𝑖𝐾

෠ℎ𝑖𝐾+1෠ℎ𝑖𝐾

∇𝜆𝑓(𝜆𝑖𝐾)

+𝜆𝑖𝐾

ො𝑔𝑖𝐾
ෝ𝑚

…

…

…

𝜓 𝜓

𝐽 𝐽



7

❑ To avoid numerical issues (e.g., during calculating gradients), selection 
criteria for the projection function are:

▪ 𝜓(𝜆) ∈ [0,∞) for all 𝜆 ∈ 𝑅

▪ 𝜓(𝜆) should be differentiable everywhere

▪ The derivative of the projection function becomes a non-zero constant, 
which can be different from 1, when 𝜆 → ∞ and -∞

▪ The value of the two constants should not be too small or large

❑ Selection of Projection function 𝜓(𝜆)

❑ An example of 𝜓 𝜆 where a can be any even number including 2

𝜓 𝜆 = ൞

−𝑎𝜆 − 𝑎 − 1 , 𝑖𝑓 𝜆 < −1

𝜆𝑎, 𝑖𝑓 − 1 ≤ 𝜆 ≤ 1

𝑎𝜆 − 𝑎 − 1 , 𝑖𝑓 𝜆 > 1



❑The resource-allocation problem is to allocate cluster resources to 
competing jobs for maximizing the sum of job utilities. 
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𝑁 The number of jobs

𝐶 The amount of available resource

𝑟𝑛 The amount of resource allocated to the job n

𝑅𝑛 The resource requirement of the job n

𝑢𝑛(𝑟𝑛) The utility function given the allocated resource 𝑟𝑛

𝛼, 𝛽
Two parameters to set the minimum and maximum 

amount of resource requirement of job n 

❑ Numerical Study: Resource Allocation

max
𝑟1,…,𝑟𝑁

෍

𝑛=1

𝑁

𝑢𝑛(𝑟𝑛)

𝑠. 𝑡. ෍

𝑛=1

𝑁

𝑟𝑛 ≤ 𝐶

𝑟𝑛 ≥ 𝛼𝑅𝑛, ∀𝑛

𝑟𝑛 ≤ 𝛽𝑅𝑛, ∀𝑛
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❑ Consider using 5 machines to provide CPU resource to 10 competing jobs

▪ In each problem scenario, the amount of available CPU resource and the 

CPU requirements of jobs are randomly selected from the Alibaba cluster 

trace

❑Algorithm implementation

▪ Each LSTM of the CLSTMs has the layer with 20 neural units. 

▪ Python and Tensorflow 2.1

▪ Evaluated on an Ubuntu 20.04 LTS server with a NVIDIA TITAN XP 

graphics card

❑ Training process uses 5,120 problem scenarios

❑ Inference (evaluation process) by the trained CLSTMs

▪ 1,000 problem scenarios 

▪ 2,000 iteration steps for each scenario

❑ Experiment Setup
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❑ Experiment Setup

❑Metrics: Relative Accuracy     

𝛼 = 1 −
መ𝑓−𝑓

𝑓
,

መ𝑓: the optimal value of objective function found by the CLSTMs or the baselines 

𝑓: the true optimal value of objective function generated by the fmincon (i.e., 

provided by the Optimization-toolbox in Matlab R2016)

❑Mean relative accuracy is the average of the relative accuracy over the 1,000 

problem scenarios 

❑Two Baseline Approaches for Comparison

▪ Gradient descent (GD)

▪ Gradient descent with momentum (GDM)

▪ Baseline approach parameters are selected by exhaustively evaluating 

various parameter combinations
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❑ Improvements by the CLSTMs

❑ Convex utility functions 𝑢𝑛 𝑟𝑛 = −𝜇𝑛
𝑟𝑛

𝑅𝑛
− 1

2
+

𝑟𝑛

𝑅𝑛

(a) (b)

The mean relative accuracy (± one standard deviation) over (a) 100 iterations and 

(b) CPU time in seconds

The iteration and CPU time consumption for achieving 90% mean 

relative accuracy are reduced by 86% and 56% when compared 

with the GDM, respectively
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❑ Improvements by the CLSTMs

❑ Nonconvex utility functions

(a) (b)

The mean relative accuracy (± one standard deviation) over (a) 100 iterations and 

(b) CPU time in seconds

The iteration and CPU time consumption for achieving 90% mean 

relative accuracy are reduced by 81% and 33% when compared 

with the GDM, respectively

𝑢𝑛 𝑟𝑛 =
1

1 + 𝑒−𝜇𝑛 𝑟𝑛−𝑅𝑛



❑Consider five different projection 

functions
(1) 𝜓 𝜆 = |𝜆|

(2) 𝜓 𝜆 =
1

2
𝜆2 + 0.25 + 𝜆

(3) a=2; (4) a=4; (5) a=6
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❑ Impact of projection functions

❑ The lower whisker, the bottom of the box, the red horizontal line, the top of 

the box and the upper whisker represent the 5th, 25th, 50th, 75th and 95th 

percentile of the relative accuracy, respectively

𝜓 𝜆 = ൞

−𝑎𝜆 − 𝑎 − 1 , 𝑖𝑓 𝜆 < −1

𝜆𝑎, 𝑖𝑓 − 1 ≤ 𝜆 ≤ 1

𝑎𝜆 − 𝑎 − 1 , 𝑖𝑓 𝜆 > 1
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❑ Robustness: Impact of K

❑ Each K value (the parameter in the loss functions) is used to train five 

CLSTMs with randomly initialized weights for neural networks

❑ Fig (a) and Fig (b) present the average, maximum and minimum of the mean 

relative accuracy and the standard deviation of relative accuracy for five 

CLSTMs using the same K value, respectively

(a) (b)
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❑ Robustness: Impact of M

❑ 𝜇𝑛 is randomly selected from the uniform distribution in the range of [0.001, M)
❑M is set to 1 to generate the training dataset, 

❑M is increased by 0, 20, 40, 60, 80 and 100% when generating the six datasets 

for the evaluation 

𝑢𝑛 𝑟𝑛 = −𝜇𝑛
𝑟𝑛

𝑅𝑛
− 1

2
+

𝑟𝑛

𝑅𝑛
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❑ Robustness: Large numbers of variables and constraints

❑ Nonconvex utility functions 𝑢𝑛 𝑟𝑛 =
1

1 + 𝑒−𝜇𝑛 𝑟𝑛−𝑅𝑛

The impact of the number of variables on the relative accuracy after 10 iterations and the 

number of iterations/the CPU time consumed when the mean relative accuracy achieves 0.97 

Num of jobs in 

each problem 

scenario

Num of 

variables

Num of 

constraints

Mean relative 

accuracy/standard 

deviation

Num of 

iterations

CPU time 

(second)

10 10 21 0.90/0.09 68 1.2

50 50 101 0.94/0.04 66 1.2

70 70 141 0.92/0.06 62 1.0

90 90 181 0.92/0.05 70 1.2

100 100 201 0.96/0.03 66 1.2



Thank you!

Questions?
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