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Outline

Numerical methods and computer architectures are tightly linked
Optimization methods that will be useful in the future must make
use of parallelism, minimize energy use & communication
Present three algorithmic developments:

Multilevel methods
Distributed optimization
Stochastic representation of a deterministic problem

Joint work with: A. Borovykh, C.P Ho, A. V. Hovhannisyan, N.
Kantas, T. Lelièvre, G.A. Pavliotis, J.C Salazar, N. Tsipanakis.
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Microprocessor Trends
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Memory Energy Costs for Memory Access

40nm, 8-core processor with an 8MB last-level cache†

†M. Horowitz, Computing’s Energy Problem (and what we can do about it), ISSCC 2014
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Energy costs to develop a modern neural network††

750,000 CPU days
From Athens to Thessaloniki ∼ 500 times!

†† H. Assi, J.C Duchi, The importance of better models in stochastic optimization
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A General Optimization Model

min
v∈V

f(v)

f objective/loss function
v design/decision variables
V is the “design”/constraint space
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Optimization Methods use Local Approximations

v⋆ ∈ arg min
v∈V

f(v)

Guess a solution v

Find d search direction:

f(v + d) < f(v)
∥v + d− v⋆∥ < ∥v − v⋆∥

Optimize local approximation:

f(v + d) ≈ f(v) +∇f(v)⊤d︸ ︷︷ ︸
linear: lv(d)

+ 1
2d⊤Bd︸ ︷︷ ︸

quadratic: qv(d)

Update:
v ← v + d
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Why use a Quadratic Approximation?

Greedy/Pragmatic

f(v + d) ≈ f(v) +∇f(v)⊤d︸ ︷︷ ︸
linear: lv(d)

+ 1
2d⊤Bd︸ ︷︷ ︸

quadratic: qv(d)

Smoothness: f(v + d) ≤ lv(d) + L
2 ∥d∥

2

Convexity: f(v + d) ≥ lv(d)
Strong convexity:

lv(d) + 1
2µ∥d∥2 ≤ f(v + d) ≤ lv(d) + L

2 ∥d∥
2

First Order (B is typically diagonal), Gradient Descent: Stochastic,
Proximal, Accelerated, Block Coordinate, ...
Second Order(B = ∇2f): Newton Method, Quasi-Newton, Sketched,
Subsampled ...
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Multi-level/resolution Algorithms

min
v∈Rn

f(v)

Quadratic Approximation Coarse Approximation
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Multi-level/resolution Algorithms

Q(v, vk) = f(vk) + ⟨∇fk, v − vk⟩+ 1
2αk
⟨v − vk,∇2fk(v − vk)⟩

Quadratic Approximation

Coarse Approximation
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Multi-level/resolution Algorithms

Use a low resolution problem with favorable characteristics

Quadratic Approximation Coarse Approximation
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The Three Main Ingredients of Multilevel Algorithms

1. Define Coarse Model

2. Information Transfer
3. Exploit the Coarse

Model
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Example I: Markov Decision Processes

C.P Ho, P.P. Singularly Perturbed Markov Decision Processes: A Multiresolution
Algorithm, SIAM Journal on Control and Optimization, 52(6), 3854-3886, 2014.



Example II: Machine Learning

V. Hovhannisyan, P.P, and S. Zafeiriou. MAGMA: Multi-level accelerated gradient mirror
descent algorithm for large-scale convex composite minimization, SIAM Journal on Imaging
Sciences, 2016.



Example III: Semi-definite Programming
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J.C Salazar, P.P. A Multigrid approach to SDP relaxations of sparse polynomial
optimization problems , SIAM Journal on Optimization, 2018.
K., Igor, V. Magron, J. Volčič.Optimization over trace polynomials. A. H. Poincaré, 2022.



Example IV: Second Order Algorithms in ML

N. Tsipinakis,P. Tigas, P.P, A Multilevel Low-Rank Newton Method with Super-linear
Convergence Rate and its Application to Non-convex Problems , submitted , 2022.



Related Work
Nash, S. G. A multigrid approach to discretized optimization problems.
Optimization Methods and Software, 2000
Gratton, S., Sartenaer, A., Toint, P. L. . Recursive trust-region methods for
multiscale nonlinear optimization. SIAM Journal on Optimization, 2008
W., Zaiwen, and D. Goldfarb. A line search multigrid method for large-scale
nonlinear optimization. SIAM Journal on Optimization, 2009
A. Borzi, On the convergence of the mg/opt method. PAMM, 5(1):735-736,
2005.
A. Borzi and V. Schulz. Multigrid methods for pde optimization. SIAM
review, 51(2):361 395, 2009.
S. Gratton, M. Moue, A. Sartenaer, P.L Toint, and D. Tomanos. Numerical
experience with a recursive trust-region method for multilevel nonlinear
bound-constrained optimization. Optimization Methods & Software,
25(3):359–386, 2010.
S.G Nash. Properties of a class of multilevel optimization algorithms for
equality- constrained problems. Optimization Methods and Software, 29, 2014.
S.G. Nash and R.M Lewis. Assessing the performance of an
optimization-based multilevel method. Optimization Methods and Software,
26(4-5):693–717, 2011.



Exploiting Model Geometry

Optimization over simplex: minx∈∆ f(x), ∆ = {xi ≥ 0,
∑d

i=1 xi = 1}.
Example application: Quantum state tomography i.e. estimating the
state of qubits given measurements

Two possible algorithms:
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Example application: Quantum state tomography i.e. estimating the
state of qubits given measurements

Two possible algorithms:

1. Gradient Descent: xk+1 = Π∆[xk − τ∇f(xk)]
where Π∆[·] orthogonal projection onto ∆

2. Mirror Descent: xk+1 = arg min τ∇f(xk)⊤(x− xk) + DΦ(x, xk)
where Φ is a Bregman divergence chosen to reflect the geometry of the
simplex.
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Exploiting Model Geometry

Stochastic Mirror Descent for Convex Optimization with Consensus Constraints, A.
Borovykh, N. Kantas, P.P, G.A. Pavliotis, submitted 2022
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Computing Index-1 Saddle Points

Problem Statement: Given a function f : Rd → R compute
(possibly all) index-1 saddle points.

Index-1 saddle point: ∇f(x⋆) = 0, ∇2f(x⋆) has one negative
eigenvalue and the rest positive.

Applications: Material Science, Chemical Physics, a very challenging
problem that cannot be ‘tractably’ written as an optimization problem.

Using Witten Laplacians to locate index-1 saddle points, T. Lelièvre, P.P,
https://arxiv.org/abs/2212.10135, 2022

14 / 22



Protein folding & misfolding
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Link between Sampling and Optimization

dXt = −∇f(Xt)dt +
√

β−1dB(t),

where B is the standard Brownian motion and β > 0 is the so called
‘temperature’ parameter
(Xt)t≥0 is ergodic with respect to Boltzmann-Gibbs measure
Z−1 exp(−βV (x)) dx
The p.d.f of the SDE above satisfies the Fokker-Planck PDE:

∂ρ

∂t
= div (ρ∇V ) + β−1∆ρ.
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Example on the two-well potential: V (x1, x2) = (x4
1 − x2

1) + x2
2,

Fokker Planck PDE concentrates on local minima



A stochastic representation of the Witten PDE
It is known that the Witten PDE:

∂tϕi = divx(∇V (x)ϕi) + β−1∆xϕi − [∇2V (x)ϕ]i, i = 1, . . . d

Concentrates on index-1 saddle points.
Consider the system:

dXt = −∇V (Xt) dt +
√

2β−1 dBt,

dYt = −∇2V (Xt)Yt dt,

The Fokker-Planck equation associated with the above is:

∂κ

∂t
= divx(∇V (x)κ + β−1∇xκ) + divy(∇2V (x)yκ)

We show that
ϕ(t, x) =

∫
Rd

yκ(t, x, y) dy.

solves the Witten PDE.
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Example on the two-well potential: V (x1, x2) = (x4
1 − x2

1) + x2
2,

Witten PDE concentrates on saddle points



Simulating the SDE - Animation

2ddoublewell.mp4
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Lennard Jones 7 atoms in 2d



Vacancy Diffusion in 2d



Vacancy Diffusion - Scaling with dimension

Dimension CPU-Time (s) k

18 0.85 500
46 1.68 700
138 3.84 300
202 5.59 1000
278 8.21 700



Conclusions

Numerical methods and computer architectures are tightly linked
Three algorithmic developments motivated by computational
considerations:

Multilevel methods
Distributed optimization
Stochastic representation of a deterministic problem
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