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Multi-Agent Systems

Figure: Autonomous vehicles Figure: Social network [medium.com]
[smartcitiesworld.net]

% .

: _ Figure: Drone swarms [ft.com]
Figure: Phones [ai.googleblog.com]

Stefan Vlaski (Imperial College London) Learning in Heterogeneous Networks January 11th, 2023 2/28



Optimisation for Learning

@ Learning is building models from data.
@ We want the model that fits best.

e Optimisation enables “good” learning.
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Towards Provable and Efficient Learning over Networks

@ Performance metrics o Limitations of distributed systems:
» Error probability » Network topology
» Excess risk > Limited, streaming data
» Mean-square deviation » Unreliable participation
» Convergence rate » Noisy links
> First-order stationarity » Quantisation
» Second-order stationarity > Privacy
> » Heterogeneity

Aim

Relate performance and limitations in a unified manner to inform design of distributed systems.J
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Learning Problems as Optimisation Problems

e Consider a linear regression (channel estimation) problem:
_ 0T
Vii = Wi g+ g
@ We can pursue the solution via least mean-squares:

argmin By, ; — wg " hyl?
W

@ If the relation is non-linear, we may use a deep neural net:

argminE|ly,; — 0 (Wi, -0 (Wi—1-0 (Wiihg,))) |2

wy
@ Unified formulation:

arg min EQ(wg, )
Wi
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Learning Paradigms

o Non-cooperative learning:

wy, = argmin EQ(wy, z) (5)

W
e Single-task learning (i.e., consensus optimization):

K

w” = argmin 3 pEQ(w. ) (6)
Yo k=1

e Multi-task learning over aggregate tasks w = col {wy}:

K
o_ . n
W arsmin 3 EQ(uesz) + R0 (7)
subject to w € Q (8)

» R(w) and Q encode priors on wy.

Stefan Vlaski (Imperial College London) Learning in Heterogeneous Networks January 11th, 2023 6/28



Communication Paradigms
@ Restrictions on the flow of information.

Q)
© o
Q)

Non-cooperative Centralized/federated Decentralized

@ Communication efficiency,
@ robustness to failure,
@ privacy.
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Single- vs. Multi-Task Learning

Single-Task Objective: Multi-Task Objective:
K K .
> pEQ(w, z) > BQ(wp, xx) + 5 R(W)
k=1 k=1

subject to w € Q

Example algorithm [Chen and Sayed '12]: Generic framework:
Yy = Wki-1 — N T (wpio1) Vi = w1 — VIR (Wei-1)
wy; = Z aek’(ﬂ&i Wk, = Agg <{¢Z,i}g€/\/’k>
LEN,
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Example 1 — Regularized Multitask Learning

@ Relationship prior through smoothness regularization:

K

W) = argmin Y EQ(wy; ) + ng(L ® I)w

w

o Example:

K
n
Wn—argmln ZEH’yk—hzwk|\2+§WT (LeI)w
Y k=

denotes the maximum aposteriori estimate for a linear model

with GMRF prior:

Y = h;—wz + vy

k=1

fw) = (QW)—M(K—U/2(‘£‘*)1/26—?7% WTLw
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Visualizing GMRFs
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Graph chosen according to Euclidean distance, i controls level of smoothness.
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Multitask learning under smoothness
@ Network global cost:

N
* . E T
w —arg%ng Jk(wk)—i-QW (LeI)w

k=1
o Multitask learning algorithm:
Vi = Wri1 — pVIp(wyi 1) (self-learning)
W, = (1 —un > Cu) Vi +un D ckety, (social learning)
ZENk fENk
w5
Ck6
IM@ e ,@¢k1
----- em N
“\\‘1»[’1,;‘,7
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Analytical Performace Guarantee

~ 0 o 112
MSD =~ MSD + || wy —w? ||

O(w);n smoothness,n

X: 350
Y:-22.66

A X: 0.0085

By increasing n:
-23.5
o First term is more likely to decrease

@ Second term is more likely to increase and the

MSD in dB

size of this increase depends on the .
X:4.001 .
smoothness of w° 58 X v.as2r - Single-task
sl Non-cooperation learning
726';30'3 102 107 10° 10' 102 10°
n
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Application: Weather forecasting

Graph constructed based on geodesical distance (4-nearest neighbors). Training set
(2004 — 2012), test set (2013 — 2017)

i 0 10 45 100 1000 pt
prediction error | 0.309 0.232 0.225 0.226 0.228 0.232

/
\

® Dry day ® Dry day
Occurrence of rain on Ju|y 301 2015 Prediction of rain occurrence (7’] = 45)
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Example 2 — Subspace Prior

@ An alternative model-based setting may be one where tasks are not necessarily smooth
over the graph, but instead linearly related, i.e., W € Range(Uf) for some U.

Wy = arg mln J(w Z Ji(wg), (10)
subject to w € Range(bl),

where Range(-) denotes the range space operator, and U is an KM x P full-column rank
matrix with P < K M.

@ Appears naturally in many machine learning and signal processing applications.
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Problem Formulation

o Network global cost (U full column-rank) [Nassif et al., 2020, Di Lorenzo et al., 2020]:

N
w* = argmin > Ji(wy)
Wok=1

subject to w € Range(U)

o Centralized stochastic gradient projection approach (P,: orthogonal projector onto
Range(U/))

_ N
wi =Py (Wi—l — picol {Vwk Jk('wk,i—l)}kzl)
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Algorithm

@ To get a decentralized algorithm, replace P, by an A such
that:

lim Al = P, Ao = [Alge =0 if £ ¢ Ny,

1—>00

e Multitask learning algorithm [Nassif et al., 2020]:

Vi = Wki-1 — Nﬂc(wk,i—l) (self-learning)

Wi = Y, Apthy, (social learning)
LeN,,
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Performance

@ Network global cost:

N
w* = argmin > Ji(wy)
Wok=1
subject to w € Range(U)

o Data characteristics: Hy = V2J,(w}), Ry = E[skz(wz)sgl(wg)]

H = diag{H1,...,Hn}, S =diag{Ry,...,Rn}

Mean-square-error w.r.t. w* (in the small adaptation regime) [Nassif et al., 2020]

MSD = lim %]EH W —w; ||2 ~ %Tr ((uTHu)_l (uTsu))

@ For sufficiently small step-sizes, the decentralized strategy attains the same MSD
performance as the centralized one
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Application in Beamforming

@ The framework is applied to an approximate linearly-constrained minimum-variance
(LCMV) beamforming problem [Nassif et al., 2020, 2022]

Far field signal source sy(z)

(wavelength \) freceefaect i e
Interference signal s,,() |
) ’ ——Distributed solution
% — — Centralized solution [
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=
S 1
ol 1
\ / 4l J
\9
%oz o0s 06 08 ; 122 4 is 18 2
Array output y(i) Iteration, i x10
Uniform linear array of N antennas Comparison of output SINR
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Example 3 — MAML for Multi-Agent Systems

@ Instead of directly modeling the relationship between tasks w? and wy, in model-agnostic
meta-learning one assumes that both one or several (stochastic) gradient step away from
a common launch-model:

wg ~ w® — pVQ(u’; ) (11)
@ One then optimizes:
A I v
w? = argmin - ; EQ(w — pVQ(w; z}); @7) (12)

to determine a common launch model w®, which adapts quickly to other tasks wj, via one
or several (stochastic) gradient steps.

@ See [Smith et al. 2017] for centralized MAML and [Fallah, Mokhtari, and Ozdaglar 2020]
for federated implementation and analysis.
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Diffusion-MAML: Decentralization

o If we denote:

Qw;zy, }) £ Q(w — uVQ(w; xy); ) (13)
then the optimization problem

K
1 _
A : 12
wl 2 arg%nEZEQ(w,azk,xk) (14)
k=1
is a single-task problem over the common launch model w, and can be pursued via
diffusion in a decentralized manner:

Gri = Whi-1 — PV Q(Wii1; T}, T ;) (15)

=Wgki—1 — MVQ(wk,i—l - MVQ(wk,i—1§ mllcz)7 m%z) (16)

Wi = Y amdy, (17)
[GNk
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Diffusion-MAML: Performance
Convergence Guarantee [Kayaalp, Vlaski, and Sayed 2022]

All agents agree on a common launch model in o(1/p) iterations, and together find an
approximately first-order stationary point of the aggregate objective:

1 K
%HE;EQW — uVQ(w; my); ) (18)

in O(1/u?) iterations.

Network agreement: o(1/y) iterations Convergence of centroid: O(l/ﬂz) iterations Adaptation to new tasks

wl(’l)
O(u)-mean-square W(fz)
. . et 4 2
stationary point
>

e
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Diffusion-MAML: Few-Shot Image Recognition
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Example 4: Social Machine Learning

@ So far we either explicitly induced a prior (multitask learning) or assumed an unknown

relationship (model-agnostic meta-learning).

@ What if there is no relationship between models, but rather their decisions?
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Algorithm: Independent Training followed by Cooperative Inference

Training

Prediction

Classifier k

&)

Labeled data
~ - Ny
{hky'ﬂ 3 7k,n }
n=1

Models _|
T

Streaming
unlabeled data
hy
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Decision

variables
D

Social inference using consensus protocol
on the decision [Bordignon et al, 2023]:

LI e (hpaly = +1)

,\ Ok = Api—1+ 7
ki k —
Li* (hiily = 1)
Ak = § agrdp;
LENY
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Performance

Consistency of Social Machine Learning [Bordignon et al, 2023]]

The social machine learning strategy enables consisten learning with probability:

8 Nmax
PCZ].—QGXP{— 042B2 (e_p)Q} (19)

where p > ¢, € quantifies the complexity of the of the classification problem and p quantitfies
the Rademacher complexity of the classifiers.
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Application: Partial MNIST
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Take-Aways

@ Ordinary averaging for distributed learning yields improvement only in sufficiently
homogeneous environments.

@ Multitask learning: Induce priors through regularization and constraints.
@ Model-agnostic meta-learning: Absence of task priors.

@ Social machine learning: Fully heterogeneous classifiers observing a common state.
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