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Multi-Agent Systems

Figure: Autonomous vehicles
[smartcitiesworld.net]

Figure: Social network [medium.com]

Figure: Phones [ai.googleblog.com]
Figure: Drone swarms [ft.com]
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Optimisation for Learning

Learning is building models from data.

We want the model that fits best.

Optimisation enables “good” learning.
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Towards Provable and Efficient Learning over Networks

Performance metrics
▶ Error probability
▶ Excess risk
▶ Mean-square deviation
▶ Convergence rate
▶ First-order stationarity
▶ Second-order stationarity
▶ ...

Limitations of distributed systems:
▶ Network topology
▶ Limited, streaming data
▶ Unreliable participation
▶ Noisy links
▶ Quantisation
▶ Privacy
▶ Heterogeneity

Aim

Relate performance and limitations in a unified manner to inform design of distributed systems.
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Learning Problems as Optimisation Problems

Consider a linear regression (channel estimation) problem:

γk,i = wo
k
Thk,i + vk,i (1)

We can pursue the solution via least mean-squares:

argmin
wk

E∥γk,i − wk
Thk,i∥2 (2)

If the relation is non-linear, we may use a deep neural net:

argmin
wk

E∥γk,i − σ (Wk,L · σ (Wk,L−1 · σ (Wk,1hk,i))) ∥2 (3)

Unified formulation:

argmin
wk

EQ(wk,xk) (4)
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Learning Paradigms
Non-cooperative learning:

wo
k = argmin

wk

EQ(wk,xk) (5)

Single-task learning (i.e., consensus optimization):

wo = argmin
w

K∑

k=1

pkEQ(w,xk) (6)

Multi-task learning over aggregate tasks W = col {wk}:

Wo =argmin
W

K∑

k=1

EQ(wk,xk) +
η

2
R(W) (7)

subject to W ∈ Ω (8)

▶ R(W) and Ω encode priors on wk.
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Communication Paradigms
Restrictions on the flow of information.
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Single- vs. Multi-Task Learning

Single-Task Objective:

K∑

k=1

pkEQ(w,xk)

Example algorithm [Chen and Sayed ’12]:

ψk,i =wk,i−1 − µ∇̂Jk(wk,i−1)

wk,i =
∑

ℓ∈Nk

aℓkψℓ,i

Multi-Task Objective:

K∑

k=1

EQ(wk,xk) +
η

2
R(W)

subject to W ∈ Ω

Generic framework:

ψk,i =wk,i−1 − µ∇̂Jk(wk,i−1)

wk,i =Agg
({
ψℓ,i

}
ℓ∈Nk

)
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Example 1 – Regularized Multitask Learning

Relationship prior through smoothness regularization:

Wo
η = argmin

W

K∑

k=1

EQ(wk;xk) +
η

2
W⊤(L⊗ I)W (9)

Example:

Wo
η = argmin

W

1

2σ2
v

K∑

k=1

E∥γk − hT
kwk∥2 +

η

2
WT (L⊗ I)W

denotes the maximum aposteriori estimate for a linear model
with GMRF prior:

γk = hT
kw

o
k + vk

f(W) ≜ (2π)−M(K−1)/2(|L|∗)1/2e−η 1
2
WT LW
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Visualizing GMRFs

η = 0.001 η = 0.005 η = 1

Graph chosen according to Euclidean distance, η controls level of smoothness.
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Multitask learning under smoothness
Network global cost:

W⋆ = argmin
W

N∑

k=1

Jk(wk) +
η

2
W⊤(L⊗ I)W

Multitask learning algorithm:



ψk,i = wk,i−1 − µ∇̂Jk(wk,i−1) (self-learning)

wk,i =
(
1− µη

∑
ℓ∈Nk

ckℓ

)
ψk,i + µη

∑
ℓ∈Nk

ckℓψℓ,i (social learning)
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Analytical Performace Guarantee

MSD ≈ MSD︸ ︷︷ ︸
O(µ),η

+ ∥Wo
η −Wo ∥2

︸ ︷︷ ︸
smoothness,η

By increasing η:

First term is more likely to decrease

Second term is more likely to increase and the
size of this increase depends on the
smoothness of Wo
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Application: Weather forecasting
Graph constructed based on geodesical distance (4-nearest neighbors).Training set
(2004− 2012), test set (2013− 2017)

η 0 10 45 100 1000 µ−1

prediction error 0.309 0.232 0.225 0.226 0.228 0.232

Occurrence of rain on July 30, 2015 Prediction of rain occurrence (η = 45)
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Example 2 – Subspace Prior

An alternative model-based setting may be one where tasks are not necessarily smooth
over the graph, but instead linearly related, i.e., W ∈ Range(U) for some U .

Wo
U = argmin

W
J(W) ≜

K∑

k=1

Jk(wk),

subject to W ∈ Range(U),
(10)

where Range(·) denotes the range space operator, and U is an KM × P full-column rank
matrix with P ≪ KM .

Appears naturally in many machine learning and signal processing applications.
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Problem Formulation

Network global cost (U full column-rank) [Nassif et al., 2020, Di Lorenzo et al., 2020]:

W⋆ = argmin
W

N∑
k=1

Jk(wk)

subject to W ∈ Range(U)

Centralized stochastic gradient projection approach (Pu: orthogonal projector onto
Range(U))

Wi = Pu

(
Wi−1−µcol

{
∇̂wk

Jk(wk,i−1)
}N

k=1

)
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Algorithm

To get a decentralized algorithm, replace Pu by an A such
that:

lim
i→∞

Ai = Pu, Akℓ = [A]kℓ = 0 if ℓ /∈ Nk

Multitask learning algorithm [Nassif et al., 2020]:




ψk,i = wk,i−1 − µ∇̂Jk(wk,i−1) (self-learning)
wk,i =

∑
ℓ∈Nk

Akℓψℓ,i (social learning)

ℓ
k

1

6

Nk

ψℓ,i

ψ1,i

ψ6,i

ψk,i

Ak1

Akℓ

Ak6

Akk
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Performance
Network global cost:

W⋆ = argmin
W

N∑
k=1

Jk(wk)

subject to W ∈ Range(U)

Data characteristics: Hk = ∇2Jk(w
⋆
k), Rk = E[sk,i(w⋆

k)s
⊤
k,i(w

⋆
k)]

H = diag{H1, . . . ,HN}, S = diag{R1, . . . , RN}

Mean-square-error w.r.t. W⋆ (in the small adaptation regime) [Nassif et al., 2020]

MSD = lim
i→∞

1

N
E∥W⋆−Wi ∥2 ≈

µ

2N
Tr

((
U⊤HU

)−1 (
U⊤SU

))

For sufficiently small step-sizes, the decentralized strategy attains the same MSD
performance as the centralized one
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Application in Beamforming

The framework is applied to an approximate linearly-constrained minimum-variance
(LCMV) beamforming problem [Nassif et al., 2020, 2022]
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Example 3 – MAML for Multi-Agent Systems

Instead of directly modeling the relationship between tasks wo
k and wo

ℓ , in model-agnostic
meta-learning one assumes that both one or several (stochastic) gradient step away from
a common launch-model:

wo
k ≈ wo − µ∇Q(wo;xk) (11)

One then optimizes:

wo ≜ argmin
w

1

K

K∑

k=1

EQ(w − µ∇Q(w;x1
k);x

2
k) (12)

to determine a common launch model wo, which adapts quickly to other tasks wo
k via one

or several (stochastic) gradient steps.

See [Smith et al. 2017] for centralized MAML and [Fallah, Mokhtari, and Ozdaglar 2020]
for federated implementation and analysis.
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Diffusion-MAML: Decentralization
If we denote:

Q(w;x1
k,x

2
k) ≜ Q(w − µ∇Q(w;x1

k);x
2
k) (13)

then the optimization problem

wo ≜ argmin
w

1

K

K∑

k=1

EQ(w;x1
k,x

2
k) (14)

is a single-task problem over the common launch model w, and can be pursued via
diffusion in a decentralized manner:

ϕk,i =wk,i−1 − µ∇Q(wk,i−1;x
1
k,i,x

2
k,i) (15)

=wk,i−1 − µ∇Q(wk,i−1 − µ∇Q(wk,i−1;x
1
k,i);x

2
k,i) (16)

wk,i =
∑

ℓ∈Nk

aℓkϕℓ,i (17)
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Diffusion-MAML: Performance

Convergence Guarantee [Kayaalp, Vlaski, and Sayed 2022]

All agents agree on a common launch model in o(1/µ) iterations, and together find an
approximately first-order stationary point of the aggregate objective:

min
w

1

K

K∑

k=1

EQ(w − µ∇Q(w;x1
k);x

2
k) (18)

in O(1/µ2) iterations.
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Diffusion-MAML: Few-Shot Image Recognition
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Example 4: Social Machine Learning

So far we either explicitly induced a prior (multitask learning) or assumed an unknown
relationship (model-agnostic meta-learning).

What if there is no relationship between models, but rather their decisions?
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Algorithm: Independent Training followed by Cooperative Inference

Social inference using consensus protocol
on the decision [Bordignon et al, 2023]:

δk,i = λk,i−1 +
L̂
f̃k
k (hk,i|γ = +1)

L̂
f̃k
k (hk,i|γ = −1)

λk,i =
∑

ℓ∈Nk

aℓkδℓ,i
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Performance

Consistency of Social Machine Learning [Bordignon et al, 2023]]

The social machine learning strategy enables consisten learning with probability:

Pc ≥ 1− 2 exp

{
−8Nmax

α2β2
(ϵ− ρ)2

}
(19)

where ρ ≥ ϵ, ϵ quantifies the complexity of the of the classification problem and ρ quantitfies
the Rademacher complexity of the classifiers.
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Application: Partial MNIST
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Take-Aways

Ordinary averaging for distributed learning yields improvement only in sufficiently
homogeneous environments.

Multitask learning: Induce priors through regularization and constraints.

Model-agnostic meta-learning: Absence of task priors.

Social machine learning: Fully heterogeneous classifiers observing a common state.
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